Levi forms, differential forms of type (0,1) and pseudoconvexity in Banach spaces
نویسندگان
چکیده
منابع مشابه
Arens regularity of bilinear forms and unital Banach module spaces
Assume that $A$, $B$ are Banach algebras and that $m:Atimes Brightarrow B$, $m^prime:Atimes Arightarrow B$ are bounded bilinear mappings. We study the relationships between Arens regularity of $m$, $m^prime$ and the Banach algebras $A$, $B$. For a Banach $A$-bimodule $B$, we show that $B$ factors with respect to $A$ if and only if $B^{**}$ is unital as an $A^{**}$-module. Le...
متن کاملWeak symplectic forms and differential calculus in Banach spaces
1Jerrold E. Marsden and Tudor S. Ratiu, Introduction to Mechanics and Symmetry, second ed., Chapter 2. 2Serge Lang, Differential and Riemannian Manifolds, p. 150, Theorem 8.1; Mircea Puta, Hamiltonian Mechanical Systems and Geometric Quantization, p. 12, Theorem 1.3.1. 3Andreas Kriegl and Peter W. Michor, The Convenient Setting of Global Analysis, p. 522, §48; Peter W. Michor, Some geometric ev...
متن کاملPositive Forms on Banach Spaces
The first representation theorem establishes a correspondence between positive, self-adjoint operators and closed, positive forms on Hilbert spaces. The aim of this paper is to show that some of the results remain true if the underlying space is a reflexive Banach space. In particular, the construction of the Friedrichs extension and the form sum of positive operators can be carried over to thi...
متن کاملarens regularity of bilinear forms and unital banach module spaces
assume that $a$, $b$ are banach algebras and that $m:atimes brightarrow b$, $m^prime:atimes arightarrow b$ are bounded bilinear mappings. we study the relationships between arens regularity of $m$, $m^prime$ and the banach algebras $a$, $b$. for a banach $a$-bimodule $b$, we show that $b$ factors with respect to $a$ if and only if $b^{**}$ is unital as an $a^{**}$-module. le...
متن کاملDecomposable quadratic forms in Banach spaces
A continuous quadratic form on a real Banach space X is called decomposable if it is the difference of two nonnegative (i.e., positively semidefinite) continuous quadratic forms. We prove that if X belongs to a certain class of superreflexive Banach spaces, including all Lp(μ) spaces with 2 ≤ p < ∞, then each continuous quadratic form on X is decomposable. On the other hand, on each infinite-di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Polonici Mathematici
سال: 1976
ISSN: 0066-2216,1730-6272
DOI: 10.4064/ap-33-1-63-69